
Writing Plugin Friendly Applications
in Python
By Travis Hathaway

GIS Enthusiast 🌎

Guitarist/Musician 🎸

Social Scientist 🏘

Python Programer 🐍

Who am I? Where am I?
Website:
travishathaway.com

GitHub:
github.com/travishathaway

LinkedIn:
linkedin.com/in/thath

SoundCloud:
soundcloud.com/travis-hathaway

https://travishathaway.com
https://github.com/travishathaway
https://linkedin.com/in/thath
https://soundcloud.com/travishathaway

Where do I
work?

We are hiring! 🎉 🙌
Check out our website for more information:

https://www.anaconda.com/careers

Remember to tell them that Travis sent you! 😉

https://www.anaconda.com/careers

What we’ll cover:

What is even a
plugin?

󰤇

How do they
work?

🔨 ⚙
How do we do it

in Python?

🔌 🐍

Should my
application be

plugin friendly?

🙄

Also, we look at a real-world example

Conda is a package manager
written in Python. The application
is currently undergoing
renovations to make it more plugin
friendly. We’ll take a look at how
it’s going!

🧐

What is even a plugin?

󰤇

"plug-in, also called add-on or extension, is
computer software that adds new functions to
a host program without altering the host
program itself." (Sterne, 2014)

󰤇 󰤇󰤇

��

󰤇 󰤇

Plugins in the wild

Here are just a few
examples of how you
use plugins everyday.

🐅 🌴

Should my application
be plugin friendly?

🙄

Pros and cons

Pros ✅
● Can make your application highly

adaptable

● Enables you to grow a community of
developers writing plugins

● For internal projects, could be a
great way to help organize teams

Cons ❌
● Security risks by opening application

up to third parties

● Increases complexity of code and
project

● With each new version of your
application comes a risk of breaking
existing plugins

How do they work?

🔨 ⚙

The plugin
mechanism

🔌

Host programs provide the following:

● A way for the plugin to register
itself

● A protocol to use for exchanging
data

The host program operates
independently of the plugin

Plugins do not typically operate
independently of the host program

(Wikipedia, 2023)

Closer look: VST

“Virtual Studio Instrument (VST) is an audio plug-in
software interface that integrates software synthesizers
and effects units into digital audio workstations.”
(Wikipedia, 2023)

Virtual instruments like drums Effects like reverb

How do VSTs work?

Registering Data Exchange Protocol

Applications which use VSTs typically
have their users place all VSTs they
want to use in a folder where this can
be discovered.

To exchange data, VSTs primarily
rely on two protocols: raw audio
signals and MIDI

Data exchange protocol: raw audio

Digital Audio Workstation (host program)

VST

Audio-in DAW Mixer
Audio-in

Audio-out

Aud
io-

out

Data exchange protocol: MIDI

Digital Audio Workstation (host program)

VST

MIDI-in Mixer
MIDI-in

Audio-out

Aud
io-

out

What’s going on underneath the surface?

Plugin Hooks

🪝🎣
Host applications must expose an API to
use for their plugins

One way they do this is by exposing
so-called “hooks”. These hooks allow
the plugin to be invoked for certain
events or to extend functionality or
appearance.

What hooks should a DAW* have?

audio_hook Called when the DAW wants to send and receive an audio signal to

the VST

midi_hook Called when the DAW wants to send and receive an MIDI signal to

the VST

*DAW = Digital Audio Workstation

How do we do this in
Python?

🔌 🐍

Introducing: Pluggy

Pluggy is a library that provides a
system the that host program can use
to expose hooks to the plugin.

Host 🖥
defines hooks;
uses hooks

Plugin 🔌
implements
hooks

Pluggy lies at the core of “pytest” a
very popular library for writing tests in
Python.

Let’s create a
plugin

1. Create the hook

2. Implement a default

3. Use the hook in our

application

$ tree .

.

├── README.md

├── fancy_print

│ ├── __init__.py

│ ├── hooks.py

│ └── main.py

└── pyproject.toml

Project structure for “fancy_print”

hooks.py
import pluggy

PROJECT_NAME = "fancy_print"

hookspec = pluggy.HookspecMarker(PROJECT_NAME)

class FancyPrintHookSpec:

 @hookspec

 def fancy_print_pad_char(self) -> str:

 """Used to override fancy print padding character"""

Creating hooks

hooks.py
import pluggy

PROJECT_NAME = "fancy_print"

hookspec = pluggy.HookspecMarker(PROJECT_NAME)

class FancyPrintHookSpec:

 @hookspec

 def fancy_print_pad_char(self) -> str:

 """Used to override fancy print padding character"""

Creating hooks

Every pluggy application
needs a hookspec object to
register your hooks

hooks.py
import pluggy

PROJECT_NAME = "fancy_print"

hookspec = pluggy.HookspecMarker(PROJECT_NAME)

class FancyPrintHookSpec:

 @hookspec

 def fancy_print_pad_char(self) -> str:

 """Used to override fancy print padding character"""

Creating hooks

To keep our hooks
organized, we put them in
a single class and
register them individually
with the hookspec
decorator.

hooks.py
import pluggy

PROJECT_NAME = "fancy_print"

hookspec = pluggy.HookspecMarker(PROJECT_NAME)

class FancyPrintHookSpec:

 @hookspec

 def fancy_print_pad_char(self) -> str:

 """Used to override fancy print padding character"""

Creating hooks

Using type hints, we
establish the specifics of
our data exchange
protocol. Our expects only
strings to be returned
from this hook.

hooks.py
hookimpl = pluggy.HookimplMarker(PROJECT_NAME)

@hookimpl

def fancy_print_pad_char() -> str:

 """

 Default implementation for this application

 """

 return "🍇"

Implementing a default

hooks.py
hookimpl = pluggy.HookimplMarker(PROJECT_NAME)

@hookimpl

def fancy_print_pad_char() -> str:

 """

 Default implementation for this application

 """

 return "🍇"

Implementing a default

We use the hookimpl object
to mark implementations of
the hooks we have defined.

hooks.py
hookimpl = pluggy.HookimplMarker(PROJECT_NAME)

@hookimpl

def fancy_print_pad_char() -> str:

 """

 Default implementation for this application

 """

 return "🍇"

Implementing a default

It’s then used as a
decorator mark the
implementations. These
functions must have the
same name as the hookspec!

main.py
import pluggy

from fancy_print import hooks, PROJECT_NAME

def get_plugin_manager() -> pluggy.PluginManager:

 """

 Initializes and returns a `pluggy.PluginManager` object to use

 """

 plugin_manager = pluggy.PluginManager(PROJECT_NAME)

 plugin_manager.add_hookspecs(hooks.FancyPrintHookSpec)

 plugin_manager.register(hooks)

 plugin_manager.load_setuptools_entrypoints("fancy_print")

 return plugin_manager

Using it in our application

main.py
import pluggy

from fancy_print import hooks, PROJECT_NAME

def get_plugin_manager() -> pluggy.PluginManager:

 """

 Initializes and returns a `pluggy.PluginManager` object to use

 """

 plugin_manager = pluggy.PluginManager(PROJECT_NAME)

 plugin_manager.add_hookspecs(hooks.FancyPrintHookSpec)

 plugin_manager.register(hooks)

 plugin_manager.load_setuptools_entrypoints("fancy_print")

 return plugin_manager

Using it in our application

In our main application file we
create a function to retrieve a
PluginManager object

main.py
import pluggy

from fancy_print import hooks, PROJECT_NAME

def get_plugin_manager() -> pluggy.PluginManager:

 """

 Initializes and returns a `pluggy.PluginManager` object to use

 """

 plugin_manager = pluggy.PluginManager(PROJECT_NAME)

 plugin_manager.add_hookspecs(hooks.FancyPrintHookSpec)

 plugin_manager.register(hooks)

 plugin_manager.load_setuptools_entrypoints("fancy_print")

 return plugin_manager

Using it in our application

We create the PluginManager
object and then register the
hook specs and our default
implementation

main.py
import pluggy

from fancy_print import hooks, PROJECT_NAME

def get_plugin_manager() -> pluggy.PluginManager:

 """

 Initializes and returns a `pluggy.PluginManager` object to use

 """

 plugin_manager = pluggy.PluginManager(PROJECT_NAME)

 plugin_manager.add_hookspecs(hooks.FancyPrintHookSpec)

 plugin_manager.register(hooks)

 plugin_manager.load_setuptools_entrypoints("fancy_print")

 return plugin_manager

Using it in our application

This step allows us to register
all plugins found as setuptools
entrypoints. This is where all
the “external” plugins are
loaded.

main.py

def main() -> None:

 """

 Main entry point for the program

 """

 plugin_manager = get_plugin_manager()

 pad_char = plugin_manager.hook.fancy_print_pad_char()

 pad_chars = ''.join(pad_char * 5)

 print(f"{pad_chars}\n\nso fancy!!!\n\n{pad_chars}")

Using it in our application

main.py

def main() -> None:

 """

 Main entry point for the program

 """

 plugin_manager = get_plugin_manager()

 pad_char = plugin_manager.hook.fancy_print_pad_char()

 pad_chars = ''.join(pad_char * 5)

 print(f"{pad_chars}\n\nso fancy!!!\n\n{pad_chars}")

Using it in our application

This is how we invoke our
plugin hooks in our main
application

Quick recap

🧐 ● Pluggy applications need hook definitions

● These hooks are marked with the
HookspecMarker object

● Pluggy applications also need to define a
HookimplMarker object

● This marker is used to register plugin hooks

A more complex example

Problem

I want to create a command line
application that can search for images on
the internet.

I also want to support many image
searching backends (e.g. Google Images,
Unsplash, Imgur and more)

Solution

Write the application to be plugin
friendly by allowing us to swap out the
image search backend.

How make
thing?!?!

We need a way to register plugins that
provide image search backends

We need a way to configure the image
search backends at runtime

We need a clear protocol to follow when
creating these image search backends (i.e.
which methods to provide)

from typing import Protocol

class ImageSearchBackendProtocol(Protocol):

 def search(self, query: str) -> list[dict[str, str]]:

 """

 Search method that must be implemented for protocol

 """

Image search backend: protocol

from typing import Protocol

class ImageSearchBackendProtocol(Protocol):

 def search(self, url: str) -> list[dict[str, str]]:

 """

 Search method that must be implemented for protocol

 """

Image search backend: protocol

We create a protocol class
that plugins will have to
implement.

from typing import NamedTuple

class ImageSearchBackend(NamedTuple):

 """

 Represents all data needed to register a plugin for a

 new image search backend.

 """

 # Name of the plugin; this will be referenced in our configuration

 name: str

 # Class that implements our protocol class

 backend: type[ImageSearchBackendProtocol]

Image search backend: NamedTuple

from typing import NamedTuple

class ImageSearchBackend(NamedTuple):

 """

 Represents all data needed to register a plugin for a

 new image search backend.

 """

 # Name of the plugin; this will be referenced in our configuration

 name: str

 # Class that implements our protocol class

 backend: type[ImageSearchBackendProtocol]

Image search backend: NamedTuple

Next, we create a simple
immutable data type by
subclassing from NamedTuple.
Our plugin hooks will return
this object

from typing import NamedTuple

class ImageSearchBackend(NamedTuple):

 """

 Represents all data needed to register a plugin for a

 new image search backend.

 """

 # Name of the plugin; this will be referenced in our configuration

 name: str

 # Class that implements our protocol class

 backend: type[ImageSearchBackendProtocol]

Image search backend: NamedTuple

We use the protocol type we
previously defined here to
hint at the type of object
that should be set here.

from fancy_print.hooks import hookimpl, ImageSearchBackend

class CustomBackend:

 def search(self, query: str) -> list[dict[str, str]]:

 # ... implementation goes here 😎

@hookimpl

def image_search_backend() -> ImageSearchBackend:

 """Hook responsible to register our image search backend"""

 return ImageSearchBackend(

 name="custom_backend",

 backend=CustomBackend

)

Image search backend: plugin code

from fancy_print.hooks import hookimpl, ImageSearchBackend

class CustomBackend:

 def search(self, query: str) -> list[dict[str, str]]:

 # ... implementation goes here 😎

@hookimpl

def image_search_backend() -> ImageSearchBackend:

 """Hook responsible to register our image search backend"""

 return ImageSearchBackend(

 name="custom_backend",

 backend=CustomBackend

)

Image search backend: plugin code

Here’s the special type we
defined below. If you have
type hinting turned on, it
will alert you if you have
passed in an object that
doesn’t match the protocol.

def main(query: str, backend_name: str):

 """

 Instantiates the plugin class and runs the image search

 """

 plugin_manager = get_plugin_manager()

 search_class = None

 for search_plugin in plugin_manager.hook.image_search_backend():

 if search_plugin.name == backend_name:

 search_class = search_plugin.backend

 if search_class is not None:

 search_obj = search_class()

 results = search_obj.search(query)

 # if not found, raise an exception or something...

Image search backend: plugin code

def main(query: str, backend_name: str):

 """

 Instantiates the plugin class and runs the image search

 """

 plugin_manager = get_plugin_manager()

 search_class = None

 for search_plugin in plugin_manager.hook.image_search_backend():

 if search_plugin.name == backend_name:

 search_class = search_plugin.backend

 if search_class is not None:

 search_obj = search_class()

 results = search_obj.search(query)

 # if not found, raise an exception or something...

Image search backend: plugin code

In our main function, we
just have to find the
correct hook. We use the
name attribute from our
special type.

def main(query: str, backend_name: str):

 """

 Instantiates the plugin class and runs the image search

 """

 plugin_manager = get_plugin_manager()

 search_class = None

 for search_plugin in plugin_manager.hook.image_search_backend():

 if search_plugin.name == backend_name:

 search_class = search_plugin.backend

 if search_class is not None:

 search_obj = search_class()

 results = search_obj.search(query)

 # if not found, raise an exception or something...

Image search backend: plugin code

Because we know the plugin
provided search class
conforms to our protocol, we
can be using it fearlessly!

Want even more
code to look at?

I recently created an example project to
explore some of these ideas while also
trying make it a starter project.

It’s called “latz” and you can find it on my
GitHub account:

https://github.com/travishathaway/latz

There’s lots of documentation!

https://github.com/travishathaway/latz

What about this
conda stuff you
mentioned
earlier?

Ahh, yes, that…

Well, the interesting thing is that you’ve
already seen how we setup our plugin
hooks up!

The same pattern I just showed you all for
my image search backend example
application is also roughly how this is laid
out in conda.

But wait… What is even…?

What is even conda?

Conda is a package manager supporting all
major operating systems written in Python

It was originally developed to ease the pain of
installing many of the Python libraries
associated with scientific analysis

The project is now over 10 years old

Currently over 30
million active users

🥳

Why do we want to make it plugin friendly?

Many of the reasons mentioned before, but primarily to
empower the community of users to begin contributing
useful bits of functionality to the core of conda.

We also want to use plugins as a tool to encourage
innovation and allow our conda users to better
customize the tools to their specific needs.

🔌
✌

But… how is it done?

Currently identifying what qualifies as a good candidate
for plugin hooks

Potential future plugin hooks:
● CEP: Conda Generic Plugin Hooks
● CEP: Conda Fetch Plugin Hook

Current plugin hooks:
● Solver
● Subcommand
● Virtual Package

https://github.com/conda-incubator/ceps/pull/45
https://github.com/conda-incubator/ceps/pull/44

Concluding thoughts

Plugins can be a great way to organize your application,
especially if you want to enable collaboration across
organizations or large groups of people

Carefully plan the parts you expose to be plugin hooks and
ensure you have use-cases to back them up!

Document your code! Make sure you have a clean house
before inviting others in 🧹 🏠

✌

