
Great Expectations & The Wonderful World of
Data Quality Tools in Python

Sam Bail @spbail, Python Users Berlin, November 2020

Hi, I’m Sam! (@spbail)

● I’m originally from Germany, currently based in NYC
● I have a PhD in semantic web technologies with a focus on

data representation formalisms (Linked Data, OWL, RDF, in
case that rings a bell…)

● I’ve been doing “data work” for a while, mostly working
with 3rd party healthcare data

● And now I’m an engineering manager and head of
partnerships at Superconductive, the core maintainers
behind Great Expectations

Agenda

● Part 1: The Wonderful World of (Open Source) Data
Quality in Python
○ Types of “data quality” tools
○ Overview of some prominent ones

● Part 2: Great Expectations: Overview and motivation
● Part 3: “Getting started” live demo of Great Expectations
● Q&A

The challenge: Data workflows today are a mess

● Data pipelines are brittle and often
fail, both loudly and silently

● Tacit knowledge scattered among
domain experts, technical experts,
and the code and data itself

● Maintenance is time-consuming,
expensive, and morale-killing

● Documentation is chronically out of
date and unreliable

● Trust in many data systems is low

● There are many different tools to
help with this...

Part 1:

The Wonderful World of (Open Source)
Data Quality Tools in Python

Different aspects of data “quality”

Data documentation

Data cleaning

Data version control

Data validation / testingData profiling

Amount of modification

There are lots of different tools in the space...

● I focused on “single purpose” tools rather than end-to-end
data processing packages

● It’s surprisingly hard to find a lot of open source “python
data quality” packages
○ Note: The commercial space here is growing quickly
○ A lot of these aren’t actively maintained

● Let me know if I’ve missed anything!

Pure profiling tools

Data version control

Data cleaning

Data profiling

Data documentation

Data validation

● Pandas Profiling: Like an extension of
.describe() on Pandas dataframes, creates a
more detailed profile report of the data.

Profiling + validation

Data version control

Data cleaning

Data profiling

Data documentation

Data validation

● TDDA: Allows specifying constraints on
data, which can also be generated by a
type of profiler.

● pydqc: Does some data profiling (show
basic stats about a table), compares
columns between tables, compares tables
for identity.

Profiling, validation, and documentation

Data version control

Data cleaning

Data profiling

Data documentation

Data validation

● Great Expectations: Allows you to write
declarative data tests ("I expect this table
to have between x and y number of rows"),
get validation results from those tests, and
output a report that documents the current
state of your data

Pure data validation / testing tools

Data version control

Data cleaning

Data profiling

Data documentation

Data validation

● Bulwark: Data testing framework that lets
you add tests in the form of decorators on
methods that return Pandas dataframes.
Has some built-in tests and allows custom
methods for tests.

● Engarde: A precursor to Bulwark, allows
you to add decorators with data assertions
to methods that return Pandas data frames.

Pure data validation / testing tools

Data version control

Data cleaning

Data profiling

Data documentation

Data validation

● Voluptous: A data validation library that
allows you to specify a "schema" which
includes constraints on columns (e.g.
numeric) which you can use to validate
input data in JSON or YAML.

● mobydq: Data validation web app that
allows you to check for "indicators" such as
completeness, freshness, latency, validity.

Data version control

Data version control

Data cleaning

Data profiling

Data documentation

Data validation

● dvc: Built on top of git (?), offers version
control specifically for data and Machine
Learning models.

● (any others?)

Data cleaning

Data version control

Data cleaning

Data profiling

Data documentation

Data validation

● dedupe: Uses fuzzy matching to perform
de-duplication and entity resolution in data.

● datacleaner: Does some basic cleaning
operations on data frames, e.g. dropping
rows with missing values, codes strings as
numeric values, etc.

● (and many more…)

Part 2:

Deep Dive Into Great Expectations

“Our stakeholders would notice data
issues before we did… which really

eroded trust in the data and our team”

A Great Expectations user

“Our stakeholders would notice data
issues before we did… which really eroded

trust in the data and our team”

A Great Expectations user

A typical data pipeline

Monthly data refresh ETL pipelines and
storage

Data products, e.g.
dashboards

A better data pipeline

Monthly
data refresh

Data products,
e.g. dashboards

ETL pipelines and
storage

Data
validation

Alerting

A better data pipeline...

Monthly
data refresh

Data products,
e.g. dashboards

ETL pipelines and
storage

Data
validation

Alerting

Or even better...

Monthly
data refresh

Data products,
e.g. dashboards

ETL pipelines and
storage

Data
validation

Alerting

Data
validation

Alerting

We have a test suite...

… in which we express what
we “expect” from our data

What is Great Expectations?

> pip install great_expectations It’s an open source Python library

my_data_project
└── great_expectations
 ├── checkpoints
 ├── expectations
 │ └── taxi
 │ └── demo.json
 ├── plugins
 ├── uncommitted
 └── great_expectations.yml

That operates by creating tests in
code and storing a collection of them
them as a “suite” in JSON

What is an Expectation?

expect_column_values_to_be_between(
column=’passenger_count’,
min_value=1,
max_value=6

)

It’s a statement about what we expect
from our data, expressed as a method in
Python

That is stored in JSON

{
 "expectation_type": "expect_column_values_to_be_between",
 "kwargs": {
 "column": "passenger_count",
 "min_value": 1,
 "max_value": 6
 },
}

And can be translated into a
human-readable format

“Values must always be between 1 and 6”

Built-in profiling to “scaffold” Expectations

“Values must always be between 1 and 6”

Domain
expertise

Data
profiling

Historical
data

Validation of new data using Expectations

Domain
expertise

Data
profiling

Future
data

“Values must always be between 1 and 6”

Different types of Great Expectations workflows

Interactive workflows Batch processing workflows CI/CD workflows

Import the GE library in a
notebook (local, Databricks,

etc.)

Connect to a batch of data

Profile and validate data
on-the-fly and iteratively using

Expectations

Create and store Expectation
Suites

Load Expectation Suites to
validate incoming batches of

data

Validation results determine
alerting and pipeline behavior

Local tests of pipeline
changes against input
fixtures during code

development process

Automated testing against
input fixtures, e.g. when

opening a PR

Sample architecture

App

Pipeline E

tbd

data sftp

Dashboard

Integrations

Compute

Storage +
RDBMS

Orchestration

Part 3:

Demo time! “Let’s do it live”

In this demo, I’ll show you a quick workflow

● Initialize a data context
● Connect to a Datasource
● Create an Expectation Suite with an automated profiler
● Create a Checkpoint to validate new data
● Navigate Data Docs

Example: NYC taxi data

Number of passengers per ride in January 2019

How do we prevent against issues like this in production?

Number of passengers per ride in January 2019 Number of passengers per ride in February 2019

That’s it! Questions?
Sam Bail @spbail

Great Expectations
Join our Slack channel!

greatexpectations.io/slack

