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Hi, I’m Sam! (@spbail)

● I’m originally from Germany, currently based in NYC
● I have a PhD in semantic web technologies with a focus on 

data representation formalisms (Linked Data, OWL, RDF, in 
case that rings a bell…)

● I’ve been doing “data work” for a while, mostly working 
with 3rd party healthcare data

● And now I’m an engineering manager and head of 
partnerships at Superconductive, the core maintainers 
behind Great Expectations



Agenda

● Part 1: The Wonderful World of (Open Source) Data 
Quality in Python
○ Types of “data quality” tools
○ Overview of some prominent ones

● Part 2: Great Expectations: Overview and motivation
● Part 3: “Getting started” live demo of Great Expectations
● Q&A



The challenge: Data workflows today are a mess

● Data pipelines are brittle and often 
fail, both loudly and silently

● Tacit knowledge scattered among 
domain experts, technical experts, 
and the code and data itself

● Maintenance is time-consuming, 
expensive, and morale-killing

● Documentation is chronically out of 
date and unreliable

● Trust in many data systems is low

● There are many different tools to 
help with this...



Part 1:

The Wonderful World of (Open Source) 
Data Quality Tools in Python



Different aspects of data “quality”

Data documentation

Data cleaning

Data version control

Data validation / testingData profiling

Amount of modification



There are lots of different tools in the space...

● I focused on “single purpose” tools rather than end-to-end 
data processing packages

● It’s surprisingly hard to find a lot of open source “python 
data quality” packages
○ Note: The commercial space here is growing quickly
○ A lot of these aren’t actively maintained

● Let me know if I’ve missed anything!



Pure profiling tools

Data version control

Data cleaning

Data profiling

Data documentation

Data validation

● Pandas Profiling: Like an extension of 
.describe() on Pandas dataframes, creates a 
more detailed profile report of the data.



Profiling + validation

Data version control

Data cleaning

Data profiling

Data documentation

Data validation

● TDDA: Allows specifying constraints on 
data, which can also be generated by a 
type of profiler.

● pydqc: Does some data profiling (show 
basic stats about a table), compares 
columns between tables, compares tables 
for identity.



Profiling, validation, and documentation

Data version control

Data cleaning

Data profiling

Data documentation

Data validation

● Great Expectations: Allows you to write 
declarative data tests ("I expect this table 
to have between x and y number of rows"), 
get validation results from those tests, and 
output a report that documents the current 
state of your data



Pure data validation / testing tools

Data version control

Data cleaning

Data profiling

Data documentation

Data validation

● Bulwark: Data testing framework that lets 
you add tests in the form of decorators on 
methods that return Pandas dataframes. 
Has some built-in tests and allows custom 
methods for tests.

● Engarde: A precursor to Bulwark, allows 
you to add decorators with data assertions 
to methods that return Pandas data frames.



Pure data validation / testing tools

Data version control

Data cleaning

Data profiling

Data documentation

Data validation

● Voluptous: A data validation library that 
allows you to specify a "schema" which 
includes constraints on columns (e.g. 
numeric) which you can use to validate 
input data in JSON or YAML.

● mobydq: Data validation web app that 
allows you to check for "indicators" such as 
completeness, freshness, latency, validity.



Data version control

Data version control

Data cleaning

Data profiling

Data documentation

Data validation

● dvc: Built on top of git (?), offers version 
control specifically for data and Machine 
Learning models.

● (any others?)



Data cleaning

Data version control

Data cleaning

Data profiling

Data documentation

Data validation

● dedupe: Uses fuzzy matching to perform 
de-duplication and entity resolution in data.

● datacleaner: Does some basic cleaning 
operations on data frames, e.g. dropping 
rows with missing values, codes strings as 
numeric values, etc.

● (and many more…)



Part 2:

Deep Dive Into Great Expectations



“Our stakeholders would notice data 
issues before we did… which really 

eroded trust in the data and our team”

A Great Expectations user

“Our stakeholders would notice data 
issues before we did… which really eroded 

trust in the data and our team”

A Great Expectations user



A typical data pipeline

Monthly data refresh ETL pipelines and 
storage

Data products, e.g. 
dashboards



A better data pipeline

Monthly 
data refresh

Data products, 
e.g. dashboards

ETL pipelines and 
storage

Data 
validation

Alerting



A better data pipeline...

Monthly 
data refresh

Data products, 
e.g. dashboards

ETL pipelines and 
storage

Data 
validation

Alerting



Or even better...

Monthly 
data refresh

Data products, 
e.g. dashboards

ETL pipelines and 
storage

Data 
validation

Alerting

Data 
validation

Alerting



We have a test suite...



… in which we express what 
we “expect” from our data



What is Great Expectations?

> pip install great_expectations It’s an open source Python library

my_data_project
└── great_expectations
    ├── checkpoints
    ├── expectations
    │   └── taxi
    │       └── demo.json
    ├── plugins
    ├── uncommitted
    └── great_expectations.yml

That operates by creating tests in 
code and storing a collection of them 
them as a “suite” in JSON



What is an Expectation?

expect_column_values_to_be_between(
column=’passenger_count’,
min_value=1, 
max_value=6

)

It’s a statement about what we expect 
from our data, expressed as a method in 
Python

That is stored in JSON

{
  "expectation_type": "expect_column_values_to_be_between",
      "kwargs": {
        "column": "passenger_count",
        "min_value": 1,
        "max_value": 6
      },
}

And can be translated into a 
human-readable format

“Values must always be between 1 and 6”



Built-in profiling to “scaffold” Expectations

“Values must always be between 1 and 6”

Domain 
expertise

Data 
profiling

Historical 
data



Validation of new data using Expectations

Domain 
expertise

Data 
profiling

Future 
data

“Values must always be between 1 and 6”



Different types of Great Expectations workflows

Interactive workflows Batch processing workflows CI/CD workflows

Import the GE library in a 
notebook (local, Databricks, 

etc.)

Connect to a batch of data

Profile and validate data 
on-the-fly and iteratively using 

Expectations

Create and store Expectation 
Suites

Load Expectation Suites to 
validate incoming batches of 

data

Validation results determine 
alerting and pipeline behavior

Local tests of pipeline  
changes against input 
fixtures during code 

development process

Automated testing against 
input fixtures, e.g. when 

opening a PR



Sample architecture

App

Pipeline E

tbd

data sftp

Dashboard



Integrations

Compute

Storage + 
RDBMS

Orchestration



Part 3:

Demo time! “Let’s do it live”



In this demo, I’ll show you a quick workflow

● Initialize a data context
● Connect to a Datasource
● Create an Expectation Suite with an automated profiler
● Create a Checkpoint to validate new data
● Navigate Data Docs



Example: NYC taxi data

Number of passengers per ride in January 2019



How do we prevent against issues like this in production?

Number of passengers per ride in January 2019 Number of passengers per ride in February 2019



That’s it! Questions?
Sam Bail @spbail



Great Expectations
Join our Slack channel!

greatexpectations.io/slack


