
asyncio
and

friends
A gentle introduction to the wild world

of async programming in Python

By Travis Hathaway

Who am I?
Name and
Websites

Travis Hathaway
https://travishathaway.com
https://github.com/travishathaway

Hats I wear

⛑🧢🪖
● Python Programmer
● Musician/Guitar Player
● Social Science Researcher

Interests Music, Social Science Research, Software,
Fitness Traveling

https://travishathaway.com
https://github.com/travishathaway

What are we going to cover today?

(Hopefully) useful
real-world examples

Basics of async in
Python

Learn when and
when not to use

async

Important
theoretical concepts

and designs

Why does
asynchronous
programming

exist?

In a nutshell
efficiency and performance

Wordier answer:
It helps our programs deal with events
which occur independent of the main
program flow. These methods help us
minimize time spent blocking and
waiting for results caused by these
events.

Synchronous Control Flow

Begin End

Database

Call (200ms)

API Call #1

(200ms)

API Call #2

(150ms)

API Call #3

(150ms)

Total Time: 700ms

Blocking

This is what occurs when one
process waits for another process
to finish.

Sometimes this is necessary due to
temporal dependencies.

Sometimes this waiting is
unnecessary because these
operations can be completed in
tandem.

Asynchronous Control Flow

Total Time: 400ms
potentially 43% faster!

Begin

End

Database

Call (200ms)

API Call #1
(200ms)

API Call #2
(150ms)

API Call #3
(150ms)

Let’s check out some
examples

async “hello world!”

import asyncio

async def main_async():
 await asyncio.sleep(0.5)
 print('Hello Python Users Berlin!')

asyncio.run(main_async())

Output: Hello Python Users Berlin!!!

async “hello world!”

import asyncio

async def main_async():
 await asyncio.sleep(0.5)
 print('Hello Python Users Berlin!')

asyncio.run(main_async())

Output: Hello Python Users Berlin!!!

All async programs in
Python need to run
inside an event loop.
The asyncio module gives
us the ability to create
an event loop to run our
async code in.

async “hello world!”

import asyncio

async def main_async():
 await asyncio.sleep(0.5)
 print('Hello Python Users Berlin!')

asyncio.run(main_async())

Output: Hello Python Users Berlin!!!

With this keyword, you
specify that this function
returns a `coroutine`
type.

To actually run the
function, we either use
the await keyword or pass
it in to our event loop…

async “hello world!”

import asyncio

async def main_async():
 await asyncio.sleep(0.5)
 print('Hello Python Users Berlin!')

asyncio.run(main_async())

Output: Hello Python Users Berlin!!!

Here is where we define
our event loop. By passing
in the coroutine that
`main_async()` returns,
our function is executed.

async “hello world!”

import asyncio

async def main_async():
 await asyncio.sleep(0.5)
 print('Hello Python Users Berlin!')

asyncio.run(main_async())

Output: Hello Python Users Berlin!!!

Our example also shows how
we await other coroutines
such as the `asyncio.sleep`
function.

When we call await we yield
control of our program to
other tasks in the event
loop. If multiple tasks are
running, then they get to
execute while we wait for
this call to return.

This is where concurrency
happens

Coroutine

Coroutines are a more generalized
form of subroutines.

Subroutines are entered at one
point and exited at another point.

Coroutines can be entered, exited,
and resumed at many different
points.

They can be implemented with the
async def statement.

Source: https://docs.python.org/3/glossary.html#term-coroutine

https://docs.python.org/3/glossary.html#term-coroutine

Where else have we seen coroutines?

def get_top_customer_details(limit: int = 10) -> Generator:
 top_customer_ids = get_top_customers(limit)

 for customer_id in top_customer_ids:
 yield get_customer_details(customer_id)

for customer in get_top_customer_details(10):
 # Send some marketing spam
 send_big_deal_notification(customer)
 send_more_marketing_stuff(customer)

 # Add to a VIP list for upcoming features
 add_to_vip_list(customer)

Where else have we seen coroutines?

def get_top_customer_details(limit: int = 10) -> Generator:
 top_customer_ids = get_top_customers(limit)

 for customer_id in top_customer_ids:
 yield get_customer_details(customer_id)

for customer in get_top_customer_details(10):
 # Send some marketing spam
 send_big_deal_notification(customer)
 send_more_marketing_stuff(customer)

 # Add to a VIP list for upcoming features
 add_to_vip_list(customer)

Generators are a type of
coroutine (simpler).

Using a yield statement
allows these two for loops
to cooperate with each
other by passing the
execution back and forth.

Time for a more
complex example…

GET 20 files synchronously

def sync_download():
 tile_server_url = 'https://tile-a.openstreetmap.fr/hot/13/1300/'
 start = 2920
 stop = 2941

 for id_ in range(start, stop):
 url = f'{tile_server_url}{id_}.png'
 resp = requests.get(url)
 # do something with response…

GET 20 files asynchronously

def async_download():
 tile_server_url = 'https://tile-a.openstreetmap.fr/hot/13/1300/'
 start = 2920
 stop = 2941
 urls = tuple(
 f'{tile_server_url}{id_}.png'
 for id_ in range(start, stop)
)

 async def main():
 async with aiohttp.ClientSession() as session:
 async def _get(url):
 resp = await session.get(url)
 # do something with response…

 await asyncio.gather(*(_get(url) for url in urls))

 asyncio.run(main())

GET 20 files asynchronously

def async_download():
 tile_server_url = 'https://tile-a.openstreetmap.fr/hot/13/1300/'
 start = 2920
 stop = 2941
 urls = tuple(
 f'{tile_server_url}{id_}.png'
 for id_ in range(start, stop)
)

 async def main():
 async with aiohttp.ClientSession() as session:
 async def _get(url):
 resp = await session.get(url)
 # do something with response…

 await asyncio.gather(*(_get(url) for url in urls))

 asyncio.run(main())

With this example, we add
true concurrency.

This is accomplished with
`asyncio.gather` which
accepts a sequence of
coroutine objects.

These all get scheduled
for running in our main
event loop.

Here’s some actual
performance statistics

$ simple_http sync

Avg over 5 attempts: 3.545234

$ simple_http async

Avg over 5 attempts: 0.233422 # 17x faster!

When should I not use async?

You have nothing that can
sensibly be run concurrently

You have something that could
be run concurrently, but it is
CPU bound. Use
multi-processing instead.

Your code cannot be feasibly refactored
to convert all synchronous, blocking calls
to asynchronous, non-blocking calls. Use
threads instead

Is there anything else???

🛑✋ ⚠🧐

How about some real
world examples?

Increasing concurrency
via async can lead to

downstream problems…

If you’re not careful, you
could DoS your own
systems via too many
requests.

How do we address this in our code?

async def limited_download(urls: tuple[str], limit: int = 10):

 async with aiohttp.ClientSession() as session:
 sem = asyncio.Semaphore(limit)

 async def _download_url(url):
 async with sem:
 await download_url(session, url)

 tasks = tuple(
 _download_url(session, url)
 for url in urls
)
 await asyncio.gather(*tasks)

How do we address this in our code?

async def limited_download(urls: tuple[str], limit: int = 10):

 async with aiohttp.ClientSession() as session:
 sem = asyncio.Semaphore(limit)

 async def _download_url(url):
 async with sem:
 await download_url(session, url)

 tasks = tuple(
 _download_url(session, url)
 for url in urls
)
 await asyncio.gather(*tasks)

The Semaphore object can
be used as an async
context manager.

This effectively slows
down our code as the
Semaphore object doesn’t
allow more than the
provide limit to be
running at a single
time.

How do we build more
complicated workflows?

One way to better organize
your async code is by using an
asyncio.Queue

When using queues it becomes
fairly easy to use the Pattern
(i.e. pub/sub)

async def main() -> None:
 points = (
 Point(lat=54.305902, lon=10.123282, label='Kiel'),
 Point(lat=52.521021, lon=13.381268, label='Berlin'),
 Point(lat=48.144049, lon=11.575928, label='München'),
)

 queue = asyncio.Queue()

 async def produce(point: Point) -> None:
 while True:
 async with aiohttp.ClientSession() as session:
 weather_data = await get_weather_data(session, point)
 await queue.put(weather_data)
 await asyncio.sleep(5)

 async def consume():
 while True:
 data = await queue.get()
 print(f'{data.point.label}: {data.temperature} :: {data.description}')
 queue.task_done()

 asyncio.create_task(consume())

 await asyncio.gather(*(produce(point) for point in points))

async def main() -> None:
 points = (
 Point(lat=54.305902, lon=10.123282, label='Kiel'),
 Point(lat=52.521021, lon=13.381268, label='Berlin'),
 Point(lat=48.144049, lon=11.575928, label='München'),
)

 queue = asyncio.Queue()

 async def produce(point: Point) -> None:
 while True:
 async with aiohttp.ClientSession() as session:
 weather_data = await get_weather_data(session, point)
 await queue.put(weather_data)
 await asyncio.sleep(5)

 async def consume():
 while True:
 data = await queue.get()
 print(f'{data.point.label}: {data.temperature} :: {data.description}')
 queue.task_done()

 asyncio.create_task(consume())

 await asyncio.gather(*(produce(point) for point in points))

The asyncio library
provides its own
implementation of a
Queue data structure.

async def main() -> None:
 points = (
 Point(lat=54.305902, lon=10.123282, label='Kiel'),
 Point(lat=52.521021, lon=13.381268, label='Berlin'),
 Point(lat=48.144049, lon=11.575928, label='München'),
)

 queue = asyncio.Queue()

 async def produce(point: Point) -> None:
 while True:
 async with aiohttp.ClientSession() as session:
 weather_data = await get_weather_data(session, point)
 await queue.put(weather_data)
 await asyncio.sleep(5)

 async def consume():
 while True:
 data = await queue.get()
 print(f'{data.point.label}: {data.temperature} :: {data.description}')
 queue.task_done()

 asyncio.create_task(consume())

 await asyncio.gather(*(produce(point) for point in points))

We can add objects to
the queue with
`queue.put`

async def main() -> None:
 points = (
 Point(lat=54.305902, lon=10.123282, label='Kiel'),
 Point(lat=52.521021, lon=13.381268, label='Berlin'),
 Point(lat=48.144049, lon=11.575928, label='München'),
)

 queue = asyncio.Queue()

 async def produce(point: Point) -> None:
 while True:
 async with aiohttp.ClientSession() as session:
 weather_data = await get_weather_data(session, point)
 await queue.put(weather_data)
 await asyncio.sleep(5)

 async def consume():
 while True:
 data = await queue.get()
 print(f'{data.point.label}: {data.temperature} :: {data.description}')
 queue.task_done()

 asyncio.create_task(consume())

 await asyncio.gather(*(produce(point) for point in points))

We can retrieve these
objects with a call to
`queue.get`

async def main() -> None:
 points = (
 Point(lat=54.305902, lon=10.123282, label='Kiel'),
 Point(lat=52.521021, lon=13.381268, label='Berlin'),
 Point(lat=48.144049, lon=11.575928, label='München'),
)

 queue = asyncio.Queue()

 async def produce(point: Point) -> None:
 while True:
 async with aiohttp.ClientSession() as session:
 weather_data = await get_weather_data(session, point)
 await queue.put(weather_data)
 await asyncio.sleep(5)

 async def consume():
 while True:
 data = await queue.get()
 print(f'{data.point.label}: {data.temperature} :: {data.description}')
 queue.task_done()

 asyncio.create_task(consume())

 await asyncio.gather(*(produce(point) for point in points))

We can retrieve these
objects with a call to
`queue.get`

Final Thoughts

Async programming
is complex
(async/await syntax
just tries to make this
complexity easier to
deal with!)

Ensure you have the
right use case before
starting down the
async path (make sure
other options do not
work better)

Be aware of how
your async program
fits in with your
environment, will it
overburden other
systems?

Further Resources

● Demystifying Python's Async and Await Keywords

● Lynn Root - Advanced asyncio: Solving Real-world
Production Problems - PyCon 2019 (YouTube)

● https://fastapi.tiangolo.com/async/ (great explanation of
async programming)

● https://realpython.com/async-io-python/ (packed with tons
of useful information)

📔💻📚🤓

https://www.youtube.com/watch?v=F19R_M4Nay4
https://www.youtube.com/watch?v=bckD_GK80oY
https://www.youtube.com/watch?v=bckD_GK80oY
https://fastapi.tiangolo.com/async/
https://realpython.com/async-io-python/

