I'm a Python programmer

Should | bother learning Rust?
‘ _

Christian Kauhaus
Python User Group Berlin
2020-07-09

Christian Kauhaus

® Systems Engineer @
-lying Circus Internet Operations GmbH, Halle/Saale

® Programming in Rust since 2016

® kc@flyingcircus.io
o Twitter, GitHub etc: @ckauhaus

Agenda

1. Language comparison

2. Rust language safari

3. Interactive code example

Language comparison

’ —OIr—
»

~ What attracted me to Rust?

What attracted me to Rust

e Powerful static type system

e Memory safety

® No garbage collection

® Performance comparable to C/C++

e No runtime, easy to embed
® Static binaries

® [ow level control

Discoveries on the way (cool)

® Fasy and safe parallelization/multi-threading
® (Code generation macros

e Systematic error handling

e Multi-paradigm programming

e No OO inheritance

® Abstractions with no/minimal overhead

® Excellent compiler errors

® cargo build tooling

¢ Many high-quality crates (libraries)

Discoveries on the way (not so cool)

e Borrow checker hard to get into

e High language complexity

® Need to master a large subset to become productive
® |ong compile times

e No REPL

® (Relative) source code verbosity

e Standard library (relatively) sparse

Rust and Python complement each other

Rust is strong at Python is strong at

® Performance ® Glueing components together
o Safety/reliability ® Scripting

® Parallelization ® Easyto change business logic

® |ow-level resource control ® Prototyping/exploratory programming

High-level comparison

Performance
10-100 times faster
Source code size
2—/ times larger

Run-time reliability

Much higher

High-level comparison

Concurrent high-performance programming
Possible at all

Bare metal access

Possible at all

Rust language safari

’ —OI—
'r" |

Top sights for Pythonistas

Rust has a strong type system

® Strict checking on compile time
® High expressiveness

e |nvalid stuff should be impossible to express

Never get things like:

AttributeError: 'NoneType' object has no attribute 'close’

Rust has explicit mutability control

Does work:

fn main() {
let mut hello = String::from("Hello");
hello += " world!";

println!("{}", hello);
}

Does not work:

fn main() {
let hello = "Hello"; // read-only string slice &str
hello += " world!";
println!("{}", hello);

Rust has no duck typing

But compile-time polymorphism:

impl<K, V> HashMap<K, V>

® Gets substituted with actual types at compile time
® /erorun time overhead

let mut dict: HashMap<u64, String> = HashMap::new();

Rust has no »None«

Nullable types are represented as Option:

enum Option<T> {
Some(T),
None

}

From HashMap @ stdlib

impl HashMap<K, V> {
fn get<K>(&self, key: &) -> Option<&V>
}

Rust has no decorators — but derive macros

Powerful code generation without run time overhead

#[derive(Debug, Clone)]
struct Person {

name: String,

age: u32
}

[* .. */
println!("{:?}", person); // automatic debug formatting
p2 = pl.clone(); // automatic copy constructor

Rust has no garbage collector

e Automatic memory management like C++
® Borrow/Livetimes concept
® Object ownership

Memory management rules:

1. Only one scope owns an object
2. Multiple shared (read-only) or exactly one exclusive references may be passed out

3. Data is freed if it falls out of scope

Data access

Move: ownership is transferred

impl Connection {
fn close(self) { /* .. */ }

}

Borrow: shared, read-only reference

impl Path {
fn join(&self, tail: &Path) -> PathBuf { /* .. */ }
}

Mutable borrow: exclusive, read-write reference

trait io::Read {
fn read(&mut self, buffer: &mut [u8]) -> Result<u8, io::Error> { /* .. ¥/ }
}

Ownership

use std::collections: :HashMap;

#[derive(Debug)]

struct Product {
name: String,
vendor: String,

}

fn main() {
let mut products: HashMap<i64, Product> = HashMap::new();
let shirt = Product {

name: "Python polo shirt".to_owned(),
vendor: "HELLOTUX".to_owned(),

b

println!("{:?2}", &shirt);
products.insert(24742, shirt);

/] shift transferred into products hashmap

Ownership

use std::collections: :HashMap;

#[derive(Debug)]

struct Product {
name: String,
vendor: String,

}

fn main() {
let mut products = HashMap::new();
let shirt = Product {
name: "Python polo shirt".to owned(),
vendor: "HELLOTUX".to_owned(),
}s
products.insert(24742, shirt);

println!("{:?2}", &shirt); // ERROR

Borrow checking

Does not work:

let mut h = HashMap::new();

// populate hashmap
for 1 in 0..10 {

h.insert(i, 1 + 1);

}

[/ delete every 3rd key
for key in h.keys() {
if key % 3 == 0 {
h.remove(key)
}
}

Borrow checking

Compiler error looks like this:

Compiling hashmap v0.1.0
error[EO502]: cannot borrow 'h' as mutable because it is also borrowed as immutable

--> src/main.rs:10:13

8 for key in h.keys() {

immutable borrow occurs here
immutable borrow later used here

9 if key % 3 == 0 {

10 h.remove(key);

ANNNANNANNANN mutable borrow occurs here

Rust has no exceptions — but Results

Result type for fallible execution

enum Result<T, E> {
Ok(T),
Err(E)

¥

Example:

impl File {
fn open(path: &Path) -> Result<File, std::io0::Error> { /* .. */ }

}

Rust has interfaces — Traits

Traits introduce flexibility to the type system

struct BufReader<R: Read> { /* .. */ }

impl<R: Read> BufReader<R> {
fn new(raw reader: R) -> BufReader<R> { /* .. */ }

}

Example:

let f = File::open("server.log")?;

let r = BufReader::new(f);

for 1line in r.lines() { // lines() not defined for File
[* .. %/

}

Trait objects

Forget about the concrete type

Dynamic dispatch: types and methods selected at run time

fn read_num() -> Result<usize, Box<dyn Error>> {
[/ fails with io::Error>
let s = read_to_string("foo") ?;
[/ fails with num::ParseIntError>
let num = s.trim().parse()?;
Ok (num)

e dyn T means any object implementing T
® Box wraps an arbitrary type on the heap

OMG!! Is this complicated!

Benefits of this level of control

Discord re-implemented @mention notification in Rust (blue), formerly Go (violet):

.||'.I -n- NN L i | NSE [Tid | .I'- ﬂ

. I |II | | |
| | J | | IlI I A 2
it J‘l 10 —"“’.:f‘#t::ft:‘“r ’r“*..a::'“‘l- 1 "L-_f,ﬂ::-lh I1:::’__J I'f::“’rl'*?'* | _ I

' | |I l i ||I .
_.Fﬁf\ I“II Jlllla I"fhhl | ... H.HL’H“ ,| ‘I |*(| 'IH ﬂ r‘.’n‘il I| JH JL.-'IL#;"
"‘. Hlk""u b w‘l.-"'u"‘w"'-.ﬂ’“ L_,-'q'“*"..."'n.-"r) u MM‘LJ v,

ﬁ. “ || ﬁ | u'ln “L_L“ h. .lllk‘\ 1

Take-aways

Rust's strict programming model shifts projects costs
from run time to development time

|s it worth the effort? It depends on the project!

Rust's design takes soundness issues seriously,
even if it you have to go an extra mile

Do | need this level of thoroughness? It depends on the project!

4
i

Interactive code example
bedding Rust code into Pythot

’
-

https://github.com/ckauhaus/mandelbrot-py

https://github.com/ckauhaus/mandelbrot-py

locumentation and further readi

Rust Standard Library

std - Rust - Mozilla Firefox
std - Rust

e > C e @ & https://doc.rust-lang.org/std/ N = 2 @ » =

4 ©]

Crate std 1.0.0 [+][src]

1" The Rust Standard Library

Version 1.32.0 (9fda7c223 . . . -
TrEE D) The Rust Standard Library is the foundation of portable Rust software, a set of minimal and

battle-tested shared abstractions for the broader Rust ecosystem. It offers core types, like
- Vec<T> and Option<T>, library-defined operations on language primitives, standard
See all std's items . g
macros, [/0 and multithreading, among many other things.
Primitive Types std is available to all Rust crates by default, just as if each one contained an extern crate

Modules std; import at the crate root. Therefore the standard library can be accessed in use
statements through the path std, asin use std::env, orin expressions through the

Macros
absolute path ::std,asin ::std::env::args.
Crates How to read this documentation
alloc If you already know the name of what you are looking for, the fastest way to find it is to use the
arch bar at the top of th X
core search bar at the top of the page
proc_macro Otherwise, you may want to jump to one of these useful sections:
std e std::x modules
test Primitive types

https://doc.rust-lang.org/std/

Crates.io

Browse All Crates Docs v Log in with GitHub

The Rust community’s crate registry

* Install Cargo [Getting Started

Instantly publish your crates and install them. Use the AP! to interact and
: 2,082,325,539
find out more information about available crates. Become a contributor

and enhance the site with your work. 34’51 B cratesinstock

New Crates Most Downloaded Just Updated

imgui-miniquad-render (0.1.1) imgui-miniquad-render (0.1.1)

https://crates.io

https://doc.rust-lang.org/std/
https://crates.io/

The Book

B v N
THE RUST

PROGRAMMING
LANGUAGE

i https://doc.rust-lang.org/book/

https://doc.rust-lang.org/book/

Crates (libraries)

® |ndex of Rust libraries: https://lib.rs
® (Crate docs: https://docs.rs

Tutorials

® Rust by Example: https://doc.rust-lang.org/rust-by-example/

® Exercism: https://exercism.io/tracks/rust

News

® This Week in Rust: https://this-week-in-rust.org/

https://lib.rs/
https://docs.rs/
https://doc.rust-lang.org/rust-by-example/
https://exercism.io/tracks/rust
https://this-week-in-rust.org/

Thank you

ternet Operations GmbH. All rights reserved. Clas

