
I'm a Python programmer —

Should I bother learning Rust?

Christian Kauhaus

Python User Group Berlin

2020-07-09

1 / 34

 Christian Kauhaus

Systems Engineer @

Flying Circus Internet Operations GmbH, Halle/Saale

Programming in Rust since 2016

kc@flyingcircus.io

Twitter, GitHub etc: @ckauhaus

2 / 34

Agenda

1. Language comparison

2. Rust language safari

3. Interactive code example

3 / 34

Language comparison

—or—

What attracted me to Rust?

4 / 34

What attracted me to Rust

Powerful static type system

Memory safety

No garbage collection

Performance comparable to C/C++

No runtime, easy to embed

Static binaries

Low level control

5 / 34

Discoveries on the way (cool)

Easy and safe parallelization/multi-threading

Code generation macros

Systematic error handling

Multi-paradigm programming

No OO inheritance

Abstractions with no/minimal overhead

Excellent compiler errors

cargo build tooling

Many high-quality crates (libraries)

6 / 34

Discoveries on the way (not so cool)

Borrow checker hard to get into

High language complexity

Need to master a large subset to become productive

Long compile times

No REPL

(Relative) source code verbosity

Standard library (relatively) sparse

7 / 34

Rust is strong at

Performance

Safety/reliability

Parallelization

Low-level resource control

Python is strong at

Glueing components together

Scripting

Easy to change business logic

Prototyping/exploratory programming

Rust and Python complement each other

8 / 34

High-level comparison

Performance

10-100 times faster

Source code size

2—4 times larger

Run-time reliability

Much higher

9 / 34

High-level comparison

Concurrent high-performance programming

Possible at all

Bare metal access

Possible at all

10 / 34

Rust language safari

—or—

Top sights for Pythonistas

11 / 34

Rust has a strong type system

Strict checking on compile time

High expressiveness

Invalid stuff should be impossible to express

Never get things like:

AttributeError: 'NoneType' object has no attribute 'close'

12 / 34

Rust has explicit mutability control

Does work:

fn main() {
 let mut hello = String::from("Hello");
 hello += " world!";

 println!("{}", hello);
}

Does not work:

fn main() {
 let hello = "Hello"; // read-only string slice &str

 hello += " world!";
 println!("{}", hello);
}

13 / 34

Rust has no duck typing

But compile-time polymorphism:

impl<K, V> HashMap<K, V>

Gets substituted with actual types at compile time

Zero run time overhead

let mut dict: HashMap<u64, String> = HashMap::new();

14 / 34

Rust has no »None«

Nullable types are represented as Option:

enum Option<T> {
 Some(T),
 None

}

From HashMap @ stdlib

impl HashMap<K, V> {
 fn get<K>(&self, key: &K) -> Option<&V>
}

15 / 34

Rust has no decorators — but derive macros

Powerful code generation without run time overhead

#[derive(Debug, Clone)]
struct Person {
 name: String,

 age: u32
}

/* … */
println!("{:?}", person); // automatic debug formatting

p2 = p1.clone(); // automatic copy constructor

16 / 34

Rust has no garbage collector

Automatic memory management like C++

Borrow/Livetimes concept

Object ownership

Memory management rules:

1. Only one scope owns an object

2. Multiple shared (read-only) or exactly one exclusive references may be passed out

3. Data is freed if it falls out of scope

17 / 34

Data access

Move: ownership is transferred

impl Connection {
 fn close(self) { /* … */ }
}

Borrow: shared, read-only reference

impl Path {
 fn join(&self, tail: &Path) -> PathBuf { /* … */ }
}

Mutable borrow: exclusive, read-write reference

trait io::Read {

 fn read(&mut self, buffer: &mut [u8]) -> Result<u8, io::Error> { /* … */ }
}

18 / 34

Ownership

use std::collections::HashMap;

#[derive(Debug)]
struct Product {

 name: String,
 vendor: String,
}

fn main() {

 let mut products: HashMap<i64, Product> = HashMap::new();
 let shirt = Product {
 name: "Python polo shirt".to_owned(),
 vendor: "HELLOTUX".to_owned(),

 };
 println!("{:?}", &shirt);
 products.insert(24742, shirt);
 // shift transferred into products hashmap

}

19 / 34

Ownership

use std::collections::HashMap;

#[derive(Debug)]
struct Product {

 name: String,
 vendor: String,
}

fn main() {

 let mut products = HashMap::new();
 let shirt = Product {
 name: "Python polo shirt".to_owned(),
 vendor: "HELLOTUX".to_owned(),

 };
 products.insert(24742, shirt);

 println!("{:?}", &shirt); // ERROR
}

20 / 34

Borrow checking

Does not work:

let mut h = HashMap::new();

// populate hashmap
for i in 0..10 {

 h.insert(i, i + 1);
}

// delete every 3rd key
for key in h.keys() {

 if key % 3 == 0 {
 h.remove(key)
 }
}

21 / 34

Borrow checking

Compiler error looks like this:

 Compiling hashmap v0.1.0
error[E0502]: cannot borrow 'h' as mutable because it is also borrowed as immutable
 --> src/main.rs:10:13

 |
8 | for key in h.keys() {
 | --------
 | |

 | immutable borrow occurs here
 | immutable borrow later used here
9 | if key % 3 == 0 {
10 | h.remove(key);

 | ^^^^^^^^^^^^^ mutable borrow occurs here

22 / 34

Rust has no exceptions — but Results

Result type for fallible execution

enum Result<T, E> {

 Ok(T),
 Err(E)

}

Example:

impl File {
 fn open(path: &Path) -> Result<File, std::io::Error> { /* … */ }
}

23 / 34

Rust has interfaces — Traits

Traits introduce flexibility to the type system

struct BufReader<R: Read> { /* … */ }

impl<R: Read> BufReader<R> {
 fn new(raw_reader: R) -> BufReader<R> { /* … */ }

}

Example:

let f = File::open("server.log")?;
let r = BufReader::new(f);
for line in r.lines() { // lines() not defined for File

 /* … */
}

24 / 34

Trait objects

Forget about the concrete type

Dynamic dispatch: types and methods selected at run time

fn read_num() -> Result<usize, Box<dyn Error>> {
 // fails with io::Error>
 let s = read_to_string("foo")?;

 // fails with num::ParseIntError>
 let num = s.trim().parse()?;
 Ok(num)
}

dyn T means any object implementing T

Box wraps an arbitrary type on the heap

25 / 34

OMG!! Is this complicated!

26 / 34

Benefits of this level of control

Discord re-implemented @mention notification in Rust (blue), formerly Go (violet):

27 / 34

Take-aways

Rust's strict programming model shifts projects costs

from run time to development time

Is it worth the effort? It depends on the project!

Rust's design takes soundness issues seriously,

even if it you have to go an extra mile

Do I need this level of thoroughness? It depends on the project!

28 / 34

Interactive code example

Embedding Rust code into Python

https://github.com/ckauhaus/mandelbrot-py

29 / 34

https://github.com/ckauhaus/mandelbrot-py

Documentation and further reading

30 / 34

Rust Standard Library

https://doc.rust-lang.org/std/

Crates.io

https://crates.io

31 / 34

https://doc.rust-lang.org/std/
https://crates.io/

The Book

https://doc.rust-lang.org/book/

32 / 34

https://doc.rust-lang.org/book/

Crates (libraries)

Index of Rust libraries: https://lib.rs

Crate docs: https://docs.rs

Tutorials

Rust by Example: https://doc.rust-lang.org/rust-by-example/

Exercism: https://exercism.io/tracks/rust

News

This Week in Rust: https://this-week-in-rust.org/

33 / 34

https://lib.rs/
https://docs.rs/
https://doc.rust-lang.org/rust-by-example/
https://exercism.io/tracks/rust
https://this-week-in-rust.org/

Thank you

© 2020 Flying Circus Internet Operations GmbH. All rights reserved. Classification: Public

34 / 34

